WDI Helpers Demo
Contents
WDI Helpers Demo#
This short notebook demonstrates my helper functions for working with the World Development Indicators dataset.
With these functions, you can prepare a dataset for any year you choose, with each indicator in its own column.
# Load helper functions.
%run WDI.ipynb
data = get_wdi()
Remove Country âGroupsâ#
One issue with this dataset is that includes âgroupsâ of countries, like âHigh Incomeâ or even âWorldâ. Letâs remove them, so we have only the actual countries.
First, weâll look at all the âcountryâ names.
data['Country Name'].unique()
array(['Africa Eastern and Southern', 'Africa Western and Central',
'Arab World', 'Caribbean small states',
'Central Europe and the Baltics', 'Early-demographic dividend',
'East Asia & Pacific',
'East Asia & Pacific (excluding high income)',
'East Asia & Pacific (IDA & IBRD countries)', 'Euro area',
'Europe & Central Asia',
'Europe & Central Asia (excluding high income)',
'Europe & Central Asia (IDA & IBRD countries)', 'European Union',
'Fragile and conflict affected situations',
'Heavily indebted poor countries (HIPC)', 'High income',
'IBRD only', 'IDA & IBRD total', 'IDA blend', 'IDA only',
'IDA total', 'Late-demographic dividend',
'Latin America & Caribbean',
'Latin America & Caribbean (excluding high income)',
'Latin America & the Caribbean (IDA & IBRD countries)',
'Least developed countries: UN classification',
'Low & middle income', 'Low income', 'Lower middle income',
'Middle East & North Africa',
'Middle East & North Africa (excluding high income)',
'Middle East & North Africa (IDA & IBRD countries)',
'Middle income', 'North America', 'Not classified', 'OECD members',
'Other small states', 'Pacific island small states',
'Post-demographic dividend', 'Pre-demographic dividend',
'Small states', 'South Asia', 'South Asia (IDA & IBRD)',
'Sub-Saharan Africa', 'Sub-Saharan Africa (excluding high income)',
'Sub-Saharan Africa (IDA & IBRD countries)', 'Upper middle income',
'World', 'Afghanistan', 'Albania', 'Algeria', 'American Samoa',
'Andorra', 'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia',
'Aruba', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas, The',
'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium',
'Belize', 'Benin', 'Bermuda', 'Bhutan', 'Bolivia',
'Bosnia and Herzegovina', 'Botswana', 'Brazil',
'British Virgin Islands', 'Brunei Darussalam', 'Bulgaria',
'Burkina Faso', 'Burundi', 'Cabo Verde', 'Cambodia', 'Cameroon',
'Canada', 'Cayman Islands', 'Central African Republic', 'Chad',
'Channel Islands', 'Chile', 'China', 'Colombia', 'Comoros',
'Congo, Dem. Rep.', 'Congo, Rep.', 'Costa Rica', "Cote d'Ivoire",
'Croatia', 'Cuba', 'Curacao', 'Cyprus', 'Czech Republic',
'Denmark', 'Djibouti', 'Dominica', 'Dominican Republic', 'Ecuador',
'Egypt, Arab Rep.', 'El Salvador', 'Equatorial Guinea', 'Eritrea',
'Estonia', 'Eswatini', 'Ethiopia', 'Faroe Islands', 'Fiji',
'Finland', 'France', 'French Polynesia', 'Gabon', 'Gambia, The',
'Georgia', 'Germany', 'Ghana', 'Gibraltar', 'Greece', 'Greenland',
'Grenada', 'Guam', 'Guatemala', 'Guinea', 'Guinea-Bissau',
'Guyana', 'Haiti', 'Honduras', 'Hong Kong SAR, China', 'Hungary',
'Iceland', 'India', 'Indonesia', 'Iran, Islamic Rep.', 'Iraq',
'Ireland', 'Isle of Man', 'Israel', 'Italy', 'Jamaica', 'Japan',
'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati',
"Korea, Dem. People's Rep.", 'Korea, Rep.', 'Kosovo', 'Kuwait',
'Kyrgyz Republic', 'Lao PDR', 'Latvia', 'Lebanon', 'Lesotho',
'Liberia', 'Libya', 'Liechtenstein', 'Lithuania', 'Luxembourg',
'Macao SAR, China', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives',
'Mali', 'Malta', 'Marshall Islands', 'Mauritania', 'Mauritius',
'Mexico', 'Micronesia, Fed. Sts.', 'Moldova', 'Monaco', 'Mongolia',
'Montenegro', 'Morocco', 'Mozambique', 'Myanmar', 'Namibia',
'Nauru', 'Nepal', 'Netherlands', 'New Caledonia', 'New Zealand',
'Nicaragua', 'Niger', 'Nigeria', 'North Macedonia',
'Northern Mariana Islands', 'Norway', 'Oman', 'Pakistan', 'Palau',
'Panama', 'Papua New Guinea', 'Paraguay', 'Peru', 'Philippines',
'Poland', 'Portugal', 'Puerto Rico', 'Qatar', 'Romania',
'Russian Federation', 'Rwanda', 'Samoa', 'San Marino',
'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia',
'Seychelles', 'Sierra Leone', 'Singapore',
'Sint Maarten (Dutch part)', 'Slovak Republic', 'Slovenia',
'Solomon Islands', 'Somalia', 'South Africa', 'South Sudan',
'Spain', 'Sri Lanka', 'St. Kitts and Nevis', 'St. Lucia',
'St. Martin (French part)', 'St. Vincent and the Grenadines',
'Sudan', 'Suriname', 'Sweden', 'Switzerland',
'Syrian Arab Republic', 'Tajikistan', 'Tanzania', 'Thailand',
'Timor-Leste', 'Togo', 'Tonga', 'Trinidad and Tobago', 'Tunisia',
'Turkiye', 'Turkmenistan', 'Turks and Caicos Islands', 'Tuvalu',
'Uganda', 'Ukraine', 'United Arab Emirates', 'United Kingdom',
'United States', 'Uruguay', 'Uzbekistan', 'Vanuatu',
'Venezuela, RB', 'Vietnam', 'Virgin Islands (U.S.)',
'West Bank and Gaza', 'Yemen, Rep.', 'Zambia', 'Zimbabwe'],
dtype=object)
Good news! The names seem to be in order, with all the various groups preceding the countries. The final group is World
, followed by the first country alphabetically, Afghanistan
.
Letâs make an array of these groups, so we can filter them out. For maximum precision, weâll use the three-letter country codes.
data['Country Code'].unique()
array(['AFE', 'AFW', 'ARB', 'CSS', 'CEB', 'EAR', 'EAS', 'EAP', 'TEA',
'EMU', 'ECS', 'ECA', 'TEC', 'EUU', 'FCS', 'HPC', 'HIC', 'IBD',
'IBT', 'IDB', 'IDX', 'IDA', 'LTE', 'LCN', 'LAC', 'TLA', 'LDC',
'LMY', 'LIC', 'LMC', 'MEA', 'MNA', 'TMN', 'MIC', 'NAC', 'INX',
'OED', 'OSS', 'PSS', 'PST', 'PRE', 'SST', 'SAS', 'TSA', 'SSF',
'SSA', 'TSS', 'UMC', 'WLD', 'AFG', 'ALB', 'DZA', 'ASM', 'AND',
'AGO', 'ATG', 'ARG', 'ARM', 'ABW', 'AUS', 'AUT', 'AZE', 'BHS',
'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BMU', 'BTN',
'BOL', 'BIH', 'BWA', 'BRA', 'VGB', 'BRN', 'BGR', 'BFA', 'BDI',
'CPV', 'KHM', 'CMR', 'CAN', 'CYM', 'CAF', 'TCD', 'CHI', 'CHL',
'CHN', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB',
'CUW', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY',
'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', 'FRO', 'FJI', 'FIN',
'FRA', 'PYF', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GIB', 'GRC',
'GRL', 'GRD', 'GUM', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND',
'HKG', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', 'IMN',
'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', 'PRK',
'KOR', 'XKX', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR',
'LBY', 'LIE', 'LTU', 'LUX', 'MAC', 'MDG', 'MWI', 'MYS', 'MDV',
'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO',
'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NRU', 'NPL', 'NLD',
'NCL', 'NZL', 'NIC', 'NER', 'NGA', 'MKD', 'MNP', 'NOR', 'OMN',
'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT',
'PRI', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU',
'SEN', 'SRB', 'SYC', 'SLE', 'SGP', 'SXM', 'SVK', 'SVN', 'SLB',
'SOM', 'ZAF', 'SSD', 'ESP', 'LKA', 'KNA', 'LCA', 'MAF', 'VCT',
'SDN', 'SUR', 'SWE', 'CHE', 'SYR', 'TJK', 'TZA', 'THA', 'TLS',
'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', 'TCA', 'TUV', 'UGA',
'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM',
'VIR', 'PSE', 'YEM', 'ZMB', 'ZWE'], dtype=object)
Weâll keep only the rows of data that are for actual countries, not these groups.
data = wdi_remove_groups(data)
data
Country Name | Country Code | Indicator Name | Indicator Code | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | ... | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Unnamed: 66 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70658 | Afghanistan | AFG | Access to clean fuels and technologies for coo... | EG.CFT.ACCS.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 24.800000 | 26.100000 | 27.400000 | 28.600000 | 29.700000 | 30.900000 | 31.900000 | 33.200000 | NaN | NaN |
70659 | Afghanistan | AFG | Access to clean fuels and technologies for coo... | EG.CFT.ACCS.RU.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 9.100000 | 10.200000 | 11.100000 | 12.200000 | 13.000000 | 13.850000 | 15.100000 | 15.900000 | NaN | NaN |
70660 | Afghanistan | AFG | Access to clean fuels and technologies for coo... | EG.CFT.ACCS.UR.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 75.700000 | 77.600000 | 78.800000 | 79.700000 | 80.900000 | 81.600000 | 82.300000 | 82.600000 | NaN | NaN |
70661 | Afghanistan | AFG | Access to electricity (% of population) | EG.ELC.ACCS.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 68.290649 | 89.500000 | 71.500000 | 97.699997 | 97.699997 | 96.616135 | 97.699997 | 97.699997 | NaN | NaN |
70662 | Afghanistan | AFG | Access to electricity, rural (% of rural popul... | EG.ELC.ACCS.RU.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 60.566135 | 86.500511 | 64.573357 | 97.099358 | 97.091972 | 95.586174 | 97.075630 | 97.066711 | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
383567 | Zimbabwe | ZWE | Women who believe a husband is justified in be... | SG.VAW.REFU.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | 14.500000 | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
383568 | Zimbabwe | ZWE | Women who were first married by age 15 (% of w... | SP.M15.2024.FE.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | 3.700000 | NaN | NaN | NaN | 5.418352 | NaN | NaN | NaN |
383569 | Zimbabwe | ZWE | Women who were first married by age 18 (% of w... | SP.M18.2024.FE.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | 33.500000 | 32.400000 | NaN | NaN | NaN | 33.658057 | NaN | NaN | NaN |
383570 | Zimbabwe | ZWE | Women's share of population ages 15+ living wi... | SH.DYN.AIDS.FE.ZS | NaN | NaN | NaN | NaN | NaN | NaN | ... | 59.200000 | 59.400000 | 59.500000 | 59.700000 | 59.900000 | 60.000000 | 60.200000 | 60.400000 | NaN | NaN |
383571 | Zimbabwe | ZWE | Young people (ages 15-24) newly infected with HIV | SH.HIV.INCD.YG | NaN | NaN | NaN | NaN | NaN | NaN | ... | 18000.000000 | 17000.000000 | 15000.000000 | 14000.000000 | 12000.000000 | 9700.000000 | 9600.000000 | 7500.000000 | NaN | NaN |
312914 rows Ă 67 columns
Choose a Year#
wdi_show_by_year(data)
Total rows: 312914
Year Entries
1960 29778
1961 33817
1962 35333
1963 35610
1964 36130
1965 38030
1966 38102
1967 39245
1968 39257
1969 39951
1970 52976
1971 59137
1972 61404
1973 61258
1974 62488
1975 65546
1976 67666
1977 70591
1978 70571
1979 71217
1980 75353
1981 77216
1982 78029
1983 77949
1984 78507
1985 79619
1986 80305
1987 81350
1988 80466
1989 81708
1990 102450
1991 108469
1992 112714
1993 113218
1994 115012
1995 121963
1996 121754
1997 123608
1998 124563
1999 129907
2000 152109
2001 147025
2002 151785
2003 151335
2004 155793
2005 165272
2006 165659
2007 169506
2008 168367
2009 169741
2010 180751
2011 175760
2012 178712
2013 174605
2014 180448
2015 177736
2016 176842
2017 175140
2018 171100
2019 158408
2020 127080
2021 52770
Letâs use 2018
. Itâs recent, but has more data than the more recent years.
year = 2018
Limit to this Year and Pivot the Table#
With our chosen year, we can limit the data to a single indicator per country per year.
Once we do that, we can pivot the table, so that each indicator will be its own column.
df = wdi_pivot(data, year=year)
df
Indicator Code | AG.CON.FERT.PT.ZS | AG.CON.FERT.ZS | AG.LND.AGRI.K2 | AG.LND.AGRI.ZS | AG.LND.ARBL.HA | AG.LND.ARBL.HA.PC | AG.LND.ARBL.ZS | AG.LND.CREL.HA | AG.LND.CROP.ZS | AG.LND.FRST.K2 | ... | per_sa_allsa.cov_q4_tot | per_sa_allsa.cov_q5_tot | per_si_allsi.adq_pop_tot | per_si_allsi.ben_q1_tot | per_si_allsi.cov_pop_tot | per_si_allsi.cov_q1_tot | per_si_allsi.cov_q2_tot | per_si_allsi.cov_q3_tot | per_si_allsi.cov_q4_tot | per_si_allsi.cov_q5_tot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country Code | |||||||||||||||||||||
ABW | 0.000000 | 0.000000 | 20.00 | 11.111111 | 2000.0 | 0.018895 | 11.111111 | 0 | 0.000000 | 4.2 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
AFG | 369.324810 | 7.650676 | 379190.00 | 58.081365 | 7703000.0 | 0.207226 | 11.798854 | 1912634 | 0.330852 | 12084.4 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
AGO | 0.000000 | 7.930094 | 569524.90 | 45.682594 | 4900000.0 | 0.159040 | 3.930376 | 3245206 | 0.252667 | 677175.1 | ... | 17.259922 | 14.61893 | 54.712662 | 0.821459 | 3.632175 | 0.718997 | 2.145329 | 3.193753 | 4.284947 | 7.815573 |
ALB | 0.000000 | 66.585076 | 11740.81 | 42.849672 | 611346.0 | 0.213282 | 22.311898 | 140110 | 3.089562 | 7889.0 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
AND | 0.000000 | 0.000000 | 188.30 | 40.063830 | 830.0 | 0.010778 | 1.765957 | 0 | 0.000000 | 160.0 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
XKX | 0.000000 | 0.000000 | 0.00 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0 | 0.000000 | 0.0 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
YEM | 0.000000 | 3.832632 | 233877.00 | 44.297403 | 1097700.0 | 0.038518 | 2.079095 | 630061 | 0.549274 | 5490.0 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
ZAF | 238.147139 | 72.833333 | 963410.00 | 79.417850 | 12000000.0 | 0.207639 | 9.892094 | 3034761 | 0.340453 | 171228.9 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
ZMB | 0.000000 | 52.510934 | 238360.00 | 32.063923 | 3800000.0 | 0.218999 | 5.111718 | 1208016 | 0.048427 | 451904.6 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
ZWE | 345.495495 | 38.350000 | 162000.00 | 41.876696 | 4000000.0 | 0.277031 | 10.339925 | 1641701 | 0.258498 | 175367.2 | ... | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
217 rows Ă 1286 columns
If you prefer, you can use more human-readable options for the countries and indicators.
df = wdi_pivot(data, year=year,index_column='Country Name', pivot_column='Indicator Name')
df
Indicator Name | ARI treatment (% of children under 5 taken to a health provider) | Access to clean fuels and technologies for cooking (% of population) | Access to clean fuels and technologies for cooking, rural (% of rural population) | Access to clean fuels and technologies for cooking, urban (% of urban population) | Access to electricity (% of population) | Access to electricity, rural (% of rural population) | Access to electricity, urban (% of urban population) | Adequacy of social insurance programs (% of total welfare of beneficiary households) | Adequacy of social protection and labor programs (% of total welfare of beneficiary households) | Adequacy of social safety net programs (% of total welfare of beneficiary households) | ... | Women who believe a husband is justified in beating his wife (any of five reasons) (%) | Women who believe a husband is justified in beating his wife when she argues with him (%) | Women who believe a husband is justified in beating his wife when she burns the food (%) | Women who believe a husband is justified in beating his wife when she goes out without telling him (%) | Women who believe a husband is justified in beating his wife when she neglects the children (%) | Women who believe a husband is justified in beating his wife when she refuses sex with him (%) | Women who were first married by age 15 (% of women ages 20-24) | Women who were first married by age 18 (% of women ages 20-24) | Women's share of population ages 15+ living with HIV (%) | Young people (ages 15-24) newly infected with HIV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country Name | |||||||||||||||||||||
Afghanistan | 67.7 | 30.9 | 13.85 | 81.6 | 96.616135 | 95.586174 | 99.626022 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.9 | 500 |
Albania | 82.4 | 79.8 | 62.50 | 92.2 | 100.000000 | 100.000000 | 100.000000 | 0.0 | 0.0 | 0.0 | ... | 6.8 | 1.8 | 0.8 | 3.7 | 5.2 | 0.9 | 1.4 | 11.8 | 27.2 | 100 |
Algeria | 0.0 | 99.6 | 98.70 | 100.0 | 99.697838 | 99.071304 | 99.933952 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.5 | 200 |
American Samoa | 0.0 | 0.0 | 0.00 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
Andorra | 0.0 | 100.0 | 100.00 | 100.0 | 100.000000 | 100.000000 | 100.000000 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
Virgin Islands (U.S.) | 0.0 | 0.0 | 0.00 | 0.0 | 100.000000 | 100.000000 | 100.000000 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
West Bank and Gaza | 0.0 | 0.0 | 0.00 | 0.0 | 100.000000 | 100.000000 | 100.000000 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
Yemen, Rep. | 0.0 | 61.5 | 42.90 | 93.7 | 62.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.5 | 200 |
Zambia | 76.0 | 11.9 | 2.10 | 24.6 | 40.317890 | 12.466436 | 76.461876 | 0.0 | 0.0 | 0.0 | ... | 45.1 | 32.2 | 21.3 | 26.0 | 31.3 | 29.5 | 5.2 | 29.0 | 61.2 | 29000 |
Zimbabwe | 0.0 | 29.9 | 6.40 | 79.1 | 45.572647 | 26.617121 | 85.468765 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 9700 |
217 rows Ă 1286 columns
Done#
We now have a dataset we can work with.
Only actual countries are included (not groupings like âHigh incomeâ.
Only one year of data is included.
Each country gets one row, and each indicator gets one column.